منابع مشابه
Deconfined quantum critical points.
The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics ne...
متن کاملFractionalized Quantum Critical Points
Groundstates of certain materials can support exotic excitations with a charge that’s a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive novel quantum phase transitions, which haven’t yet been observed in realistic systems. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we e...
متن کاملOn non-Fermi liquid quantum critical points in heavy fermion metals
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fe...
متن کاملQuantum Critical Heavy Fermion Metal YbRh
The evolution with magnetic fields of the heavy f-derived quasiparticles in YbRh2Si2 and the temperature dependence of the 4f spectral function in ambient field are calcualted by means of the Renormalized Band method. The Zeeman splitting of the Kondo resonance induces a series of Lifshitz transitions. The theoretically predicted critical magnetic fields agree quantitatively with the positions ...
متن کاملDivergence of the Grüneisen Parameter and Magnetocaloric Effect at Heavy Fermion Quantum Critical Points
At any pressure sensitive quantum critical point (QCP) the thermal expansion is more singular than the specific heat leading to a divergence of the Grüneisen parameter. For a magnetic field sensitive QCP, the complementary property is the magnetic Grüneisen ratio which equals the magnetocaloric effect. Here we use both properties to investigate magnetic QCPs in different heavy fermion (HF) meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00167-6